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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

"TECHNICAL MEMCRANDUM NO. 979~

GENERAL AIRFOIL THEORY*

By H., G. Kiissner

On the assumption of infinitely small disturdbances
the auvthor develups a generzlized integral equation of
airfoil theory which is applicable to any motion and com-
pressible fluid,. Successive specializations yield vari-
ous simpler integral ecguations, such as Possio's,
Birnbesum's, and Prandtlls integral equations, as well as
new ones for the wing of infinite span with pericdic down-
wash distritution and for the oscillating wing with high
aspect ratio. Lastly, several solutions and methods for
solving these integral equations are given.

INTRODUCTION

There are a number of airfoil theories which hold
true in two or three dimensions, are stationary or non-
stationary, and allow or disallow for the compressibility
of air, All these theories have one thing in common:
They are, strictly speaking, valid only for infinitely
small disturbances; hence the airfoil must be assumed as
infinitely thin 'and with infinitely small deflections from
a regulating surface , the generating line of which is
parallel to the direction of flight. Then the regulating
surface itself. can be approximately considered as the
place of the wing and the area of discontinuity emanating
from its trailing edge. Up to the present time, a plane
has been commonly chosen as a regulating surface, but
this restriction is not necessary.

Following the temporary interest attaching to the
vortex theory, the introduction of Prandtl'!s acceleration
potential made the old potential theory applicahle to air-
foil theory. The particular advantage of this method over

*"Allgemeine Tragflichentheorie." Luftfahrtforschung,
vol. 17, no. ll/lz,tDecember 10, 1240, pp. 370-78.
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the vortex method is that the compress1b111ty of air can
be taken into account. By this method the wing is re-
placed by an arrangement of acoustlc "'radiators." The
sole essential restriction of this theory consists in the
assumption of moderate fields of sound, that is, small
interferenges. Then the classical wave equation

~2 2 - -8
3 3
Cos o™ d N ? i + d 0”0 0 (1)
Q

3x2 v 3z2 ¢23t2

is applicable for the velocity potential and the sound.
pressure of a quiescent source distribution. Their solu-
‘tions have already been explored in all directions.  Its
application to the moving airfoil is achieved with the
aid of the well-known Lorentz transformation, the sole
invariant ing the speed of radiation . ¢, which, in the
case in quUestion, is egual to the velocity. of sound.

The setting-up of the integral eguations of the air-
foil theory is a preliminary task, which is definitely
achieved by the subsequent expositions, But this pre-
liminary work alone accomplishes little without attacking
the purely mathematical main problem, namely, the solution
of these integral equations without entering into new
discussions every time regarding the method of derivation
and its physical significance,

2., THE VELOCITY POTENTIAL OF THE ELEMENTARY RADIATOR

The wave equation [J] ® = O has, as is known, a very
gsimple solution for a spherical wave that spreads out ra-
dially at speed ¢ from its source. The solution reads:

<D°=-:'-.-f<£—-§>‘ | | (2)

- where 'r denotes the radius, t the time,and -f an
arbitrary function. Such. a spherical wave is produced
by an elementary radiator of zero order, which represents
a simple point source. The velocity potential of radia-
tors of higher order follows from (2) by partial deriva—
tion glong any coordinate directions,

The airfoll which is to manifest a pressure differ-
ence between its two surfaces is best replaced by a su-
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‘perposition of radistors of the first order (so-called

doublets) whose axes are normal to the airfoil.‘ With n
denoting the direction of the normals, the,potential‘of

. a doublet of the superposition is

".' .a® P - . s .
R at-ro

The sound .pressure of the field of: sound is

elo - :
p= - pvgg . . (4)

hence it satisfies equations [ p = 0 also because P ~
constant for very small disturbances.

%. THE LORENTZ TRANSFORMATION

The arguments so far have dealt with the radiator
at rest at ianfinity. | To reach.the pressure field of the
radiator moving at constant speed v < ¢ ©past the X
axis, the Lorentz transformation is resorted to. With
the prime ! indicating the transformed system, the
transformation formulas for a motion along the negative
x akxis of the quiescent reference system read (refer-'
ence 1): :

o

X1 o+ vt "oy Xt)e®
L T U N LT T AN Y L
V1 - v2/c?2 . _ M1 - v3/c?
On passing to the coordinate x' = X'+ vt! in the
‘entrained reference system and p051ng Mach s number
B = v/e, ‘equation (5) glves.
: x! zxt' B
X = === y=y'; z=z'; t=t'W1 - B° 4+ ——2 . (§)

J1i-g*? | ‘ o ' C's/l - B2

According to (8), the change to the mov1ng reference
system entails the following substitutions:

+ y'2 + g2 (7)
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Jl-—Bz[t’+ 1P

cfl - B2)

W12 + (1 - B2)(y!® + z12) ]
c(1 - B®)

+
1
olrs

Inasmuch as the airfoil is to be sifuated on a regu-
lating surface with generating line parallel to flow direc-
tion, that is, along x direction, the Lorentz transforma-
tion does not alter the direction of the normals n.

Later, the knowledge of the sound pressure of a mov=-
ing doublet is necessary, According to equations(2), (3),
and (4), the sound pressure for the quiescent doublet, the
sequence of the differentiations being changed, 1is:

(t - ->> (8)

%% can be

. = -p EL
on r Bt

-

Since f is an arbitrary funciion,

replaced by another arbitrary function ¥; and constant

factors such as /1 - B® can then be omitted or added.
After completing the Lorentz transformation, equations
(7) and (8) give for the moving doublet the pressure

xB . - ng + (1-8")(y2+ g_l\
Y<t T (L - B2 c(l. - B®)

Jx2 + (1 - B2) (y2 + z2)

where the transformation primecan then be omitted.

p(x,y,z t) == eL o, E

(9)
4 Jn

4, The Acceleration Potential

According to Prandtl (reference 2) a new approach to
the airfoil theory is afforded by proceeding from the
field of the acceleration vector

(v}

Lb_:xz

£

H
lQ)
E

+ 3 o
% ¥ oVY

1oy
a)

wvhere 1 is the velocity vector.

Assuming frictionless, homogeneous fluid gives the
Euler egquation:
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ar _ 4 (10)

b + P

—

grad p = b + grad

ol

Hence Db 1is also a gradient, and an "acceleration
potential® o can be introduced, so that b = grad .
Then integration of (10) gives

® + /P<%? = £(t) (11)

If the flow is undisturbed at infinity, then £(t) =
const. If, in addition, it is restricted to small dis-
turbances, then p~ coast. and the acceleration

P = - % + const . (12)
follows from (11).

On the airfoil, pressmre p, and hence @, manifests
a jump (or discontinuity). At any point outside the
lifting surface the value p, and hence ®, is continu-
ous for v < c.

The acceleration potential ®@ can be approximated,
in the case of compressible fluid, from a doublet super--
position, This procedure would be rigorously executed for
dncompressible fluid, but iFor imcompressible fluid the
pressure amplitudes would have to be small, This super-
position can also be assumed on the regulating surface in-
stead of on the lifting surface, provided the interferences
are very small.

Through the superimposed doublets, the intensity of
which at aany point corresponds to the magnitude of the
pressure jump on the lifting surface, the acceleration
potential ¢ is defined and follows from (9) and (12).
Then the velocity field must be defined from o, On the
previous assumption that the flying speed v is constant
and that the 1ifting surface moves along the negative x
axis, the acceleration vector is

ox ox-
h:-é-%--'l-V'é';{' (13)

the terms of the second order béing ignored.

Posing Db = grad o, u = grad ©®, followed by in~
tegration (13), gives
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cp.—.—a-fb--l-._v—"' . ‘ . (14) .

Given o(x,y,z,t), the desired acceleration poten-
tial finally follows from. (14) at

d(x,7.2,%) = J/‘ < FeZst - zhﬁéz;->dx' (15)

One particular adventage ofthis method of represen-
tation is that the so-called area of- discontinuity behind
the airfoil plays no part because, though it manifests a
velocity Jjump, 1t has no pressure jump and hence no dis-
continuity in .

An element 4 ¢ of the surface covered with doublets
furnishes, according to (9), (12). and (15), the potential™’

' proportion .
. x ¢¢¥“_x-x' l&'a+(1 52y (yP+2®) :
a AN +¢<1 DESERYeeD) "
ap = [ 2 _ 82) L ax (16)
UL e (1 - B2) (7% + 22

The analyzed element 4o lies in the zero point of
our coordinate system, that is, at 'x, y, 2 = 0.

5, THE GENERAL INTEGRAL EQUATION OF AIRFOIL THEORY

‘The location of our elementary radiator is now shift-
ed to any.point of the airfoil with the coordinates ¢,
¥(n), z(n). Coordinate ¢ 1s measured parallel to the
,generating line of the regulating surface; hence along
the x axis, ‘Goordinater nmn is so chosen that, after de-
velopment of the regulating surface in a plane, § and
n form a system of Cartesian coordlnates. and the sub-
stitution S . :

~

X ¥y z
x - ¢ ¥ - y(n) z - z(n) - (1?)

must be effected in (16)

The element of the surface of the airfoill is do =
d¢dn. Ordinarily 7Y -will still be a function of £ and
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n because of the varlation of doublet intensity on the
airfoil., The differentiation along the direction of the

normals can Be divided in .

3 3 ay . o az 3 -
i * o= »sin aln) 55 T co§ q(ﬂ) = - ( )

where angle af(n) ©between the direction of the normals
and the z axis is a function of the curved coordinate n.
Posting (17) and (18) in (16), followed by integration
over the airfoil, gives the complete term of the velocity

“potential of the airfoil at:

vt | a .
B(x,722,t)= // / dx'agdn@m a(n)—;«l—cos aln) 5 )
w/g e WS ,Jx'2+<1-52>[(y-y(n)>2+<z-z<n>>23)
'“\ 2T T e(1-82) c(1 - B®)

.A/xla + (1 - BQ)A:[(y - y(n))?® + .(z - z(n))?]

On the other hand, the pressure Jjump Il on the air-
foil is proportional to the intensity of the doublets.
The constant factors in (9) are precisely so chosen that

H(E,'ﬂ.t) = PV'Y(gsnat) . (20)

. Thig conforms to usual practice: 1lift, positive upward,

downwash, positive downward. Lite:aturé at times quotes
the more abstract: downwash, positive uwpward, in which
case the prefix of the right-hand side of (20) must be

- reversed.,

Equationsb(lQ) ana (20) repfésent the most general

integral eguation of the airfoil theory for small dis-

turbances that can be used for computing the pressure
Jump - @ for a given downwash. Equation (19) represents

& boundary value problem. Its solution rests on the fact
that the downwash -on the airfoil 1tself is given by the
type of motion and form change of the airfoil in first
approx1mation. Assume that n = n(x,n,t) is a small de-
flection of the airfoil from the regulating surfacée in di-~
rection of the normals. Then the downwash on the airfoil =-
the terms of the second order "being neglected - is

(19)
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ey, =F e g G

When solving (19), the Kutta flow-off condition must
be met. It is met when Y = O on the trailing edge. A
frequently employed formula, which corresponrds to this con-
dition, is? ‘

' ) fesS
Y(¢.n,t) = gln,t) [ao cot = f % an sin n e}
where

£
cos § = - 1

and 1 = 1(n), half the wing chord. For special pur-
poses, such as airfoils with circular contour, for in-
stance, combinations of spherical functions of the first
and second kim&are used, which also satisfy the Kutta
condition. : :

It may be mentioned that the vortex method also
arrives at the quantity ¥ defined by (20). It indicates
then the density of the bound vortices. This quantity Y
has, however, a much more general significance than doub-
let intensity indication since the vortex concept is re-
stricted to incompressible fluid, while (19) and (20) ap-
ply equally to compressible fluids.

6. SPECIAL FORMS OF INTEGRAL EQUATION (19)

The - general 1ntegral equation xlg) can be ‘specialized
in several directions.

‘ a) For solving the boundary value prodblem, the down-
wash on the airfoil itself is used,; that is, for points

of origin with the coordinate y = y(n,): z = z(ny).

Since solution (2) of the wavé equation upon which our
integral bases applies only otitside the singular point

r =0 'in view of the linearization, one may not integrate
" through the doubdlets because then ‘the integral over x!
becomes divergent.  Hence the downwash on the airfoil
itself can be obtained only by a limit tramsition from
'(;9).'"The method nearest &t "hand consists -in carrying

out the integration with respect to two surfaces at dis-
tence +¢ and -¢ from the airfoil, in forming the aver-
age value and proceeding to ¢—» 2, This method, applied
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“to (19), lesds to complitated Fformulas.. On the other. -

hand, the same result is achieved if, after the differ-
entlatlons. y = Y(nl) and z = z(nl) .. are formerly
written in (19) and the divergent integral is then so

"transformed by partial integration that: Cauchy's. princi-

ral yalue can.be formed. This change makes theAformula

-longer and, in general, less comprehensive. . So.in the

following we confine ourselves in most cases to the
statement .of the simpler divergent integral whilé tacit-
ly presuming the further transformation in the Cauchy.
principal value., .If the integration with respect to  x!
is made numerically, the divergence can be avoided quite
simply, by either integrating from =x - £ to . -» or
from #4o . to x -f{, depending upon whether x =-§{< 0

or > 0. TFor in any event the downwash must disappear at
infinity. In the divergent method of writing the down-
wash on the airfoil ultimately assumes the form:

x'—x~ z

=w(x,y(n,), z('nl) t) = f\! [ x'd?dn <31na.(n)?+cosa,('n)-—-)

v(1-B2) c{1 - E=) (z

iR a (1 - %) L(r = ()7 + (2 - 2(n)?] [7=7éns)

Z=2 N,

') It can be assumed that the regulating surface is
a plane, say, the xy plane, for instance. Airplane wings
are usually. flat structures. Then a« = 0, y{(n). = n, -and
z(n) = O, With specialiaztion a) 2z = O also. This as=
sumption itself effects a substantial simplification in
the equation form and has been practlcally always intro-
duced in the airfoil theory so far.

c) Some special assumptlons regardlng the type of .

‘time rate of change can be made. The linearity of the

1ntegral equation affords. especially simple forms on the
assumption of harmonic processes with respect to6 time;

‘hence harmonic oscillations .of the airfoil. The preemi-

nent 1mportance of the harmonic solutions of the wave
equation in. physxcs is an established  fact. Once harmonic
solutions of the integral equation. are known, solutions
for any time rate of change of downwash can be found by
superposition whereby the ro~¥&3sdd Laplace transformation

' rlays a prominent part. "Proceeding to the limiting case
of very small oscillation. and putting:.¥Y = Y(f,n) results
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in the stationary form of the integral eguation.. Encum-
bered with further restrlctions, this special case has
been treated moet so Tar. : -

- d) Simplified assumptions regarding the shape of the
airfoil can be made.: Allowing the span of the airfoil to
increase to -infinity and assuming the downwash to be in-
dependent of m gives the same flow process in all the
" planes 0 = const, sc¢ that the integration with respect
to n can be effected. The form of the integral equation
‘80 obtained represents a two~dimensional flow process,
-This form is of particular interest because it is solved
for any downwash function under the restriction B = 0

and for stationary flow also with B # O. The significance
of this solution in the so-called vortex filament theory
will Dbe explalned elsewhere, x

On an a1rfo11 of constant chord and infinite span
both the downwash distribution periodic in 1

w(E.ﬁ,t) = w,(Et) exp ipn

and that independent of ' m can be taken into cansidera-~
tion. This defines a Y distribution periodic in n.
The integration with respect to n can be effected in
various cases. From these harmonic solutions superposi-
tion affords solutions for any finite airfoil of comstant
chord, in motion. The method is therefore applicable
only to airfoils having a parallelogram (especially a
rectangle) as contour and pressures that no flow passes
around the 1atera1 edges of the parallelogram.

The ultimate aim of the s1mplifications is the
change of the surface integral in (19) to a line integral,
which naturally is more promising for a solution of the
integral equation. This aim can also be reached by as~
suming airfoil contours representing coordinate lines in
simple systems of curvilinear orthogonal coordinates. On
airfoils of elliptic plan form the confocal elliptic co-
ordinates permit integration with the aid of the Lamé
-~functions, For circular contour there are the spherical
functions of the first and second type. ZExamples can be
found in the. reports by Kinner (reference 3), Krienes
(reference. 4), -and. Schade (reference 5)

e) It is readlly apparent from (19) that the assump-
tion of incompressible fluid affords a substantial sim-
plification in the form of the integral éequation because
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g = 0 and ¢ =w. One'exception is the stationary flow,
where, moreover, the complicated argument of ¥, which
starts with t, disappears. Allowance for the compressi-
bility then consists merely in_ the reduction of the x
coordinate in the ratio 1:41 - B2, the so-called Prandtl
contraction, .which represents the exact counterpart of the
Lorentz contraction in the special relativity theory. The
downwash thereforeé should be computed for an airfoil with
less chord, which thus affords by given pressure jump &
smaller downwash and, conversely, by given downwash a
higher pressure jump than for B = 0.

B
g
L]

In the case of stationary flow it forthwith affords
solutions § # O, as soon as solutions for B = 0 are
available. '

The oscillating airfoil for O0< B < 1 has been
treated in only one report (reference 7), and then, as
a two-dimensional problem. All other 1nvestigations of
nonstationary airfoil motions are restricted to the assump-
tion of incompressible fluid, The reason for this is to
be found in the fact that the general case B # 0 was not
approachable by the vortex method solely employed hereto-
fore until Prandtl introduced the acceleration potential.

7. THE AIRFOIL OF INFINITE SPAN

The integration with respect to 1 on an airfoil of
constant chord and infinite span in (19) is dictated by a
special assumption for the relation of function ¥ with
time T. We put

Y(i,T_);= g(l) exp iv T

that is, study the harmonic oscillations of the airfoil.
This assumption implies no loss in general validity since
any others can be built up from the harmonic solutions by
-superposition. A$ the ultimate result a closed solution
“even can be indicated which is applicable to any downwash
function without resortlng to harmonic analysis, With the
'specializations &), b), and c¢) we obtain from (22) by

derivation accordinv to z the downwash alang the z axis
at:

4
mn il 1 ] - " 1 lmmm g L} v ' [Py R— -
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-

- f==1 f=mp o

; box o xt Wk'ea(1-8%) ((3=n)3+27) ]
3% °FP 1V [ vx+v<;;sa) - ol - B2) 1 om
2% . ke . -y P+ e

When the new variable
| . (1 -8%)(y - n)?
xi® 4 (1 - B®)z®

u

is introduced into (Z3), bearing in mind that the part in-
tegrals with respect to %n Dbetween the limits + o to ¥
and y to =~w must be of identical magnitude, the inte-
gration with respect to m can be effected with the cylin-
drical function (reference 6)

o]

J/ﬁexp(-ixu) —_—lt o - %? Ho(z)(x) (24)

I

el

u2

) 1
and (23) and (24) give the Possio integral equation

+1 x'=x-f .
wix,z,t) = et S .J/ﬂ ; v/ﬂ ax'dtv(E t) exp Eﬁl[g - x
afi-p® - J v

X! F . (@ vx® + (1 - 82) 52 |,
Jazz 0 c(1 - B®)

" Possio (reference 7) does not give this equation explicitly,.
but merely its kernel in the complex real forym ,in order to
compute numerical approximate solutions., H ‘'?/ denotes
Hankel's cylindrical function of the second type, 1 half
the airfoil chord. The origin of the coordinate system is
at airfoil center. ' L '

After differentiation and insertion of =z ='0,
equation (25) gives the downwash at
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w(x,0,t) = Mi::::: /n Y(E,t) exp i2 (£ - . x)

R - (286)
<ﬁ' vl - 82):{ - _
wherein oy : ‘
P ‘
R(B,y) = t; B vy v/ exp i u H (2)(5 D %ﬁ.
in ‘ . (=), du
=~ BV exp iuH, "' (B u) 5+ for y >0
‘;-.;v '
[o2]
=18y /FexP (-iu)Hi(z)(ﬁ w) &2 for y <0 (27)
2 ';_/__y : :
The absolute value [u| appears in (27) and farther on

because the argument has the significance of a radius.
With
lim x Hl(2>(x) = 2.1
X -0 m

it affords for the function R +the special values
R(8,0)
R(0,y) =

1

1 | | (28)
Y a , .
/ exp i u E% . (29)

In stationary flow .v .0 and (26) and (28) afford

+1
w(x,0,t) = L——-E— vri) ——-iz (30)

—L

The root factor represents Prandtl's law, according
to which the compressibility raises the pressure Jjump in

the ratio’ 1l:/1 - B2, .Integral equation (30) was origi-
nally solved closed by Munk (reference 8) for B = O.

In compressible fluid B = 0O and (26) and (29) give,
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with another integration variable x" = x - % u, the
Birnbaum integral equation.
+1 o
' e axmat
' 1 / iv X
= o — ¥ =Z(t-x" — 1
w(x,0,t) i . (g,f) exp v,(g x )(x-x")a (31)
g=-1 x"=¢

Birnbaum (reference (9)) writes his equation in the
convergent form following from (31l) after partial inte-
gration and forming Cauchy's principal value, whereby the
sequence of the integrations can be changed.

. Eguations (30) and (31) could also be deduced fron
(23) direct, by putting v = 0 "and ¢ = &% before inte-
grating,

Birnbaum's equation was solved closed by Kiissner and
Schwarz (reference 10) with allowance for Kutta's flow-
off condition. For more convenient representation of the
solution it is expedient to introduce the new variables

"X = -1 cos@8; £ = =1 cos?d
and the parameter
- vt
w=1ws=—
v

Then thefsolution, on the preﬁise of harmonic time func-
tion, reads :

Tr
Y(g,t) = % J/j{l1+cos§ + T(-4w)(l~cos 94) ] cot %
“o
+ —=2 sin® +wsin 9 in 1-cos(6+9d) Q(é,t)dé (z2)

cos B - cos 3 l-cos(8-19)
2, @ + 18P @

: (33)

(W) =

The complex function T c¢an be computed with the
ald of tabulated functions and is given in table 1.
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: This result has been’applied by the author (reference

© 11) with the ald of the superposition principle to any
“downwash function w(gd,s)3 's. is'the path of the airfoil,
Let w(é. ) =‘0 for '8 <0, :Then the solution reads:

le(e,s) y/ﬁ { (1+cog 6)cot-—+;t 2 Sin'e. : ]w(ﬁ.s)'-

‘cos'B -cos P
< -

l-cos(g+3) aw(ﬁ 8)

+sind 1n
,s- 1-cos(8 4)  Os
‘ S Lo " .
+(1 - cos 9) cot E'V/n U,(s -0) gziﬁ;gl dU:} ad (34)
2 oo
jo
1 P(-iw)
U,(s) el e exp W s 4w (35)
L1

The real function U,.{s) can be represented by
series or a pure real integral over tabulated functions
(references 11 and 12). Numerical,values are given in
table 2. It should be noted that (34) holds for variable
flying speed too, but (32) for constant flying speed only.

Next we shall analyze the yawing airfoil of infinite
span and constant chord. The angle between leading edge
and axis y, the so-called angle of yew, is denoted with
6. The half airfoil chord 1 is always measured parallel
to axis x. Putting ¢ = w«-and substituting

X -y tan & = 83 i -1 tan § = O
gives, from (23), the downwash
w(s 0,t) = '
’ 1o
- ¥(o, £) ex --(a- ny —4x7d0. (3g)
2w cos2 8 L/F V/ 4 (g= x‘)z
.—_‘L x".—ov .
This result differs from (31} only 'in the constant fac-
tor cos®8, With given downwash the pressure Jjump of the

. yawing airfoil of infinite span is ‘therefore smaller by the
factor cos®8 than that of the normally flying airfoil of
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equal chord measured in direction of flight. This result
is synonymous with that, in that only the normal component
of the flying speed, i.e., that located in the plane nor-
mal to the airfoil, is aerodynamically effective. It is
readily apperent that in frictionless fluid the tangential
component, which corresponds to a displacement of the air-
foil of infinite span along its generating line, must be
devoid of aerodynamic effect, and therefore not ascertain-
able by pressure measurements outside the airfoil.

But, if the pressure is measured in a reference sys=-
tem that is s0lidly connected with the transversely moving
airfoil, the Lorentz transformation is dictated if the
fluid is compressible. With vz denoting the transverse
veloclty measured contrary to direction ¥y, it is neces-
sary, according to (5) to substitute

t'+ voyt/c®

‘\/1 - Vga/cz

in the integral (28).

. Next comes the case of the airfoil with perlodic Y
distribution across the span. Let

N(E,m,t) = Y(£,t) exp 1 B n - (37)

The study is restricted to the special cagse ¢ = @,
that igs, in compressible fluid. Putting

n -y
Vx 12 4+ p*
while noting that the part integrals from +4o. to y and

from y to = must be of the same magnitude, affords
the determinate integral (reference 13)

U/:exp(-xu) Jz;g%=T = % [Zo(x) - No(x)] (38)

where N is Neumann's c¢ylindrical function and Z the
Struve function., Abbreviating

G (x) = 2,(1 z) - N (i x) (59)
Gl(x) = Z2,(i x) - ¥,(1i x) =

=1 PV
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w(x,&,z,t):%— exp iuyf, / 'dx'!‘dﬁzl 'Y_(._,g‘,t +

. E*—z - - .
x'-;rx+£ - ; (i «/;'_"'_4:_2—) L (40)
S;nce 
Eﬂfgifl = ; i Gl(x)
dx v

the differential followed by insertion of 2z = 0, x!" =
x - x' gives the downwash at

A 4o
w(x,y,0,t) = é; exXp iuy ‘ N (g,t
Q;—Z xm=£
L O (41)
B

Intcgral equation (41) is similar in structure to
(26). 1Its further integration requires a special assump~
tion for the time function. If harmonic oscillations arec

.involved, a real formula must bc used or (41) must be

written. Since,
lim xG,(x) = - %; C (42)
X—> 0 Y ' '
the downwash for W —>0 follows from (41) and (42) at

+1 +m n
. - ax"at
w(x,0,t) = = ':"'; ’ Y (g b+ F VX" ‘”(:__xu?)é (_4,.3)__,..

V—L x"~§

8. THE AIRFOIL WITH HIGH ASPECT RATIO

According to (23) the downwash of a flat oscillating
airfoil in incompressible fluid is
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wix,y,2,t) = ﬁ /' x'didn'v(ﬁ.n t) exp -— (xtex+ t)
m )
1

(44)

az2 Jx 124 (y- n)2+z

The introduction of the new integration variable

x! = —'u~/(y -n)® 4+ 3% (45)
in (44) affords

wix,y,z,t) ='£*~/P/ dtan¥(¢,n,t) exp ——(-x+§)

2 F1
X §z2 J/ﬂ exp(~- —— JQy-n)z + z° > vr“} lmz (48)
,-x C gﬁ‘
J(y— YR+3g?2

On an airfoil with high aspect ratio we find for most
points of the surface

lx - §‘<<]y - nl , (47)

Only in the closer proxlmity of the starting point
which itself may be situated on the airfoil, does inequa-
tion (47) fail to hold unconditionally. The more slender
the contour the smaller the error introduced when the lower
limit of the integral is approximately put at u =0 in
(46), Following this,the integration can be carried out

according to (38) with known functions, ultimately yielding,
after differentiation, the downwash

W(.va,oot) E%ff dgdﬂ Y(g:ﬂot) exp E-%_i (-X-!-g)
< Y G1<l’.‘y-n D

|7 =l

(48)

mquation (48) is substantlally s1mp1er than the orig-
inal (44). Admittedly, it holds only for special downwash
distributions in x dlrection, nanely,
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f*”**“~w(i;yio;t>'='FT}i“éip'iia@i; %} - (49)

as is readily seen from”a comﬁarison of (48) and (49). It
affords the downwash function

- -3 A ‘ . 198 A N dfdn '
w(y) = 8‘1:, //P’Y(g.n) exp —f—g G,_(% (¥-n DI—:;'-_M (80)
2 Fl .

, This equation can be solved implicitly only with a
supplementary assumption for function Y(ﬁ,n). As the
next assumption it is established that the Y distribu-
tion as a function of £, wup to ¢ factor c(n) depend-
ent on mn, shall be such as if two-dimensional flow ex-
isted in every section. This is the second essential ap-
proximate assumption. The downwash being given by (49),
the desired Y distribution can be computed from (32)
and the integral

zl(ﬂ)
E(n) = /q Y(¢,n) exp = ¢ at (51)
J
12(n)

formed. ZEntering (49) in (32) affords with

tE=to(n) = 1n) cos 35w (n) =v1i(n)/v
Y(,m) = o) ¥ () exp (- 2 g,(n) oot T [5,@)

+1J,(@W + (J,(®W - 1 7,(W) T (D) (52)

tE,(n) is the coordinate of the airfoil medial line. For

airfoil contours that are symmetrical to the n axlis,
£o=0.

.9 and J; are Bessel's functions; T 1is given by
(33) as quotient of Hankel's functions, Entering (52) in
(51), followed by integration with respect to ¢, ' gives
K(n) = C(n) = w(n). 1(n) £(w(n))

By 1 B _ vz e (53)
£(@ = J,"(D+I, " @)+ (I (@) - 1 T,(T))? T(F)
If the flow were actually plane, £(n) would be egqual to 1.

Wext (51) is entered in (50). Since (50), for rea-
sons outlined previously, is divergent, partial integration
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is néceésary for forming Gauchjls’principal value. Then

s(x) = 2 = f eiw) & (54)
, B T k) a
- - v “\n/) an
w(y) = F(8,K) + 4= fs <;|y B nD an ¥y - (55)
J,

By unlimited increase of aspeét,ratio, dK/dn- tends
toward zero., Then exact plane flow prevails and

- K (y)
w( = F S’K = (56
y) = P(5.X) = =7y £ (y)) )

according to (53) and (55)., The final form of integral
equation for the oscillating airfoil of large aspect ratio
follows from (55) and (56) at

+b

() = r(y) 1 v ak(n) an

wly) = M (NE (7)) | am t_/ﬁs (v't’y ) n]) in y-n 57)
-b

Putting p = 0,
- 8¢0) = 13 £(0) = 2

gives, from equatioq (57), the stationary form

+b
F(y) = K(y) L1 dK(n) _d n  (58)
2W1(Y) 4w % d n y=-no
-b

This is the well-known Prandtl integral equation of

- "yortex filament theory." One usually substitutes in the
first term of (58) for m the measured stationary circula-
tion constant of a real airfoil section ¢, <mw, although
the whole theory dealt with here applies only to airfoils.
Quantity K in (58) has a very elementary significance;
namely, ' ‘

K(n) = Y(t,mdat

that is,lthe so-called circulation of the Qing. The sig-
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_ nificance of X in (57).is less elementary. .Cicala (ref-

M
i,
;
%_

- ‘erence 14) and others have attempted to extend the vortex
filament theory by means of vortex concepts to the case
of the oscillating airfoil and actually arrived at an
equation agreeable with (57).. But Cicala arbitrarily

3
s
g-zt
i

identifies X with the total circulation (sum of bound
and free vortices along wing chord) and accordingly finds

(2)

(®)

pt

1 =

g4
£ (0 4

T eip‘i.m [30(2)(m)'- i H,,

. As concerns the permissible downwash distribution
in x direction no data are given at all, So, in this in-
stance, it is necessary to state, the vortex method leads
to inaccurate results. Equation (58) cannot be general-
ized to (57) by vortex theory, although (57) can be spe-
cialized in (58).

Equation (57) first gives quantity X(y). But to
compute the 1ift requires the bound circulation

)
‘T(n) = /r Y(¢,n) at (59)
‘iJ
Putting (52) in (59), followed by integration with respect
to & vields ' '

T(n) = on) mw(m) i) exp (= £ ¢ () 3o@)

+ 1 I (W) + (J,(W) - i J,(W))T(w)] (60)

Comparison of (53) anda (60) gives the bound circula-
tion

1) exp (- 2605))

T (@) - 1 J_(B(y))

& | T(y) = (81)

It is again pointed out that (57) obtained from (44)
by two approximate assumptions applies only to downwash
functions of the form (49), where w(y) can be a complex
function. Other downwash functions cannot be treated by
(57) unless one is satisfied to subtract. a downwash func-
! tion w in the form of (49) from the given downwash -

f .function Wg and.to integrate the smallest possible dif-
‘ference w_, = w on.- the assumption of two-dimensional

flow, by m&ans of (32). This method has been used until
-the present time in 'the practical application of the sta-

(S
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tlonary form (58) without being at all clearthat it in-
* cludes a supplementary assumption going beyond the vor-
" tex filament . theory.

When an attempt is made ‘to apply (57) under the

_cited assumptions approximately to any other downwash

distribution w{s,y), the guestion of what mean value
to employ for w(y) in (57) arises. By assuming plane
flow quantity Y can be computed with (32) for any func-
tions w(d,y). Equation (49) is then so chosen that it
affords the same characteristic quantity K on the as-
sumptlon of plane flow as the glven downwash w(d,y) in
plane flow. Then ﬂ

K 1 (¥)= I(Y)exp“—ﬁo(y)d/ Y(B,y)exp( ﬁbcose)sinede

=_exp—lgo(y)1<y) /:/1 [1+cos@+(1 cosé)T(w)]cotﬁ

p28in i lnl ~cos(g+9) w(ﬁ.y)Xexp(—lwcos(»sined&dé
cosB-cos 8 l-cos(6-9)

=1(y) exp(ig-go(y)) (1-cos 8)w(9,5)ad[JTo(T+1T (@)

o (I5(E) ~ £, (D)) @) (62)
(535) On the bthef'hénd;'equation.(49) gives,'éccording to
3
Eo(y) = mi(m)w(y) [T,(@) = 1 3, (@]
[To(w) + 1 32(W) + (Jo(@) - 1 J2(B)) T(T)] (63)

Putting Ky (y) = Kz(y), equations (62) anda (63) give

/n(l cOSsz(ﬁ ylds.
iv

wiy) = —_— bt (y) (64)
! J(w)-—iJ(w) xp 7 Loly |

. The numerator of this fraction represents the known
integral term w, that:is decisive for the circulation

"in plane flow. By trénslatlonal and rotary oecillations
of a flat airfoil,. w is equal to the downwash at 3/4

wing ehord (rear neutral p01nt) For staticnary flow the
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' denominator. of the fraction (64) 1§ equal to 1; then W =

w.. But this does not hold for nonstationary flow. Put-
ting, as a check, (49) in (64) identically satisfies (64).

Allowing for (53), (61), and (64), equation (57) can
be written in the form , : .

1 riy)
;—f(l-cosé)w(ﬁ.y)dﬁ_= — O N—
. T : Jo +1id Ho +
o ""(y)[’ = " (a) (=) :!
Jo =1id, -i B,
+b
. J, - 1id ’
fexp<-‘l;,1i§o(y)>—92';——l' /’SK%IB"‘"‘>
. :{ ' ULB
a T, : iv L | |
— Ir(n) (J4 = 1dy) 2= ¢ (n) | = (65)
am [0 e T dh e T Botn) 5T |

where J and H are functions of w(y) outside the in-
tegral and of W(n) inside of the integral; I' is the
customary bound circulation. In consequence of the ap-
proximate assumption regarding the mean value of W, equa-
tion (65) no longer gives the circulation of the plane
flow exact for infinite aspect ratio, which makes it nees-
sary to put the first quotient of the first brace equal
?o gne. This is apparently as justified as in equation
56). S .

Visualizing a stationary periodic downwash field,
while discounting for the time being the effect of the
vortices already contained in this veloclty field on the
airfoil, a flat airfoil moving rectilinearly and at con-
stant speed through this downwash fleld, is continually

‘subject to a downwash of the form (49), whence (57) is

forthwith applicable. Any stationary ‘downwash fields can

"be presented by linear 'superposition of several such
*fields of different periods. Equation (57) is therefore

especially suitable for treating gust stresses of airfoils
with large aspect ratio.

The complex function ‘S(x) occurring in the kernel
of the integral (57) is given by (39) and (54). Numeri-

cal” values are given in table 3. Because of
o o *»
lim x® G, (x) = - @ : (66)
X ——= @

*Probably an error. .
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"1lim x'S(x) = - 2
x——éco '

follows from (54) and (66)

In rapid oscillations, that is, large values of

lL-'y - n}, the induction effect given by the second term

of (57) is therefore very small, and in the extreme case
of high frequency an almost plane flow must be counted on
even on an airfoil of finite span, if the aspect ratio is
high. This is an important result.

Theoretically the solution of (57) can be effected in
the same manner as the much discussed equation (58), al-
though the addition of the complex function S makes it
more protracted. The result, which is, moreover, usually
encumbered by the assumption (64) in partial cases, con-
sists on airfoils wlth large aspect ratio and at the prac-
tical velues of W in the order of magnitude of 1.0 only
in a small correction relative to plane flow.

In case such refinements of the solution are not
deemed necessary, it is more appropriate to apply an iter-
ation method which ties in with the exact integral equa~
tion (44). A somewhat correct approximate solution .
Y{g,n,t) for a given downwash w is afforded from (32)
on the premise of plane flow. ZEntering ¥, in (44) gives
a downwash v, # w. The difference w - w, is then en-
tered again in (32); &Y is computed and this added to
Y. as correction factor, etec. The convergence of this
method needs to be checked of course from one case to the
other, although it should be sufflczenb in general for
slender airfoils.

There is nothing to prohibit the application of this
method to compressible fluid (B # 0), once the general
solution of (26) in form of an integral representation of
the type of solution (32) found for B = 0, is available.

9. SYSTEMS OF SEVERAL AIRFOILS

The general form (19) of the integral equation of the
airfoil theory comprises the possibility that the surface
integral dfdn can be extended over severalspatially sepa-
rated regions of the airfoil. A case in point is the -
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biplane or the wing with split: flap.; of course, Kuttals
flow-off condition must V& satisfied for the trailing

' edges of each part of the airfoil.

Given a general solution Y (w) of the integral
equation for a single ailrfoil, the problem of two alrfoils
can be splved by successive approximation actording to the
superposition prinf le's .Assume the given downw% ? of the

and’ of airfoil (2) as. = 0O,

Flrst compute as solutionrin first approximation

‘Y(l) L\l)( (1))

As a result of this pressure dlstributioﬁ, there 1is in

.conformity with the genéral integral equation. an:alwaygs.’

¢omputable downwash field
(2) - J(Y(l))

which 1nduces on alrfoll (2) the pressure distribution
2 2
:'AY‘ )'= L( )(w( ))‘?
which in turn creates the downwash field

a2 gy

. .which induces on.airfoil (1) the. pressurée distribution

Ay(l) = (l) A (1))
In the second approxlmatlon the pres?uge distr}bution of
‘airfoil (1) is therefore. g%ven by ¥ N and
that of airfoil (2) by AY . This method of iteration
can then:be continuved.” In-cases where the distance of
the airfoils is not very small in relation to the wing
chord, it converges very well, as proved by Kleinwachter
(reference 15) for: stationary flow. :

The 'iteration method is chiefly 0pportune when the
solution L in continuous form is known. Thus for the
present it is restricted to two-dimensional Flow with
c. = ®», for which the. solutions (82) and (34), respec~-
tively, are available, '

Translation by.J.lvenier,

National Advisory Committee

for Aeronautics.,
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Table I. Function T(as).

Table IT. Function Uy (s).

Table . Function § (a:).‘:‘

| ReT | Im7 | & | ReT | ImT

0,000} 1,00000 0,00000 [ 0,72{ 0,12481 | —0,24865
0,002 0,99342 | —0,02516 { 0,74) 0,12034 | —0,24458
0,010| 0,96525 | —0,09135{ 0,76 0,11611 | —0,24061
0,02 | 0,92745 | —0,15042 0,78 0,11210 | —0,23676
0,04 | 0,85340 | —0,23200 { 0,80| 0,10829 | —0,23300
0,06 | 0,78408 |-—0,28519 | 0,82| 0,10467 | — 0,22935
0,08 | 0,72086 | —0,32080 | 0,84 0,10123 | — 0,22580
0,10 | 0,66385 | —0,34460 [ 0,86 0,09795 | —0,22234
0,12 | 061265 | —0,36015| 0,88 0,09483 | —0,21808
0,14 | 0,56674 | —0,36978 [ 0,90| 0,09186 | — 0,21570
0,16 | 0,5255¢ | —0,37513 | 0,92| 0,08902 | —0,21251
0,18 | 048851 | —0,37735 0,94 0,08631 | — 0,20940
0,20 | 045516 | —0,37725| 0,96 0,08372 | —0,20637
0,22 | 042504 | —0,37545 | 0,98 0,08124 | —0,20342
0,24 | 0,39778 | —0,37239 | 1,00{ 0,07887 | —0,20055
0,26 | 0,37303 | — 0,36841 1,1 | 0,06843 | —0,18721
0,28 | 0,35050 | —0,36376 | 1,2 | 0,05991 | —0,17642
0,30 | 032004 | —0,35864 | 1,3 | 0,05287 | —0,16493
0,32 | 031114 | —0,35319 1,4 | 0,04699 | —0,15555
0,34 | 0,29389 | —0,34752 1,5 | 0,04208 | —0,14713
0,36 | 0,27804 | —0,34172 1,6 | 0,03780 | —0,13953
0,38 | 0,26344¢ | — 0,33585 1,7 | 0,03417 | —0,13264
0,40 | 024985 | —0,32997 | 1,8 | 0,03103 | —0,12636
042 | 0,23748 | —0,32411 1.9 | 0,02830 | —0.12063
044 | 0,22592 § —0,31831 2,0 | 0,02591 | —0,11538
046 | 021518 | —0,31258 |- 2,6 | 0,01749 | —0,09459
048 | 020518 | —0,30605 | 3,0 | 0,01256 | —0,08001
0,50 | 0,19587 | -—0,30142 3,5 | 0,00944 | —0,06924
0,52 | 0,18718 |—0,29600 [ 4,0 | 0,00734 | — 0,06099
0,54 | 0,17905 | — 0,29071 4,5 | 0,00587 | — 0,05447
0,56 | 0,17144 | — 0,28554 50 | 0,00479 | —0,04920
0,58 | 0,16430 | —0,28049 | 10,0 | 0,00124 | — 0,02489
0,60 | 0,15760 | —0,27557 | 20 0,00031 | —0,01249
062 | 015130 | —0,27078 | 30 0,00014 | —0,00833
0,64 | 0,14537 | —0,26611 | 40 0,00008 | — 0,00625
0,66 | 013978 | —0,26156 | 50 0,00005 | — 0,00500
0,68 | 013450 | — 0,25714 | 100 0,00001 | — 0,00250
0,70 | 0,12952 | —0,25284 | o 0 0

§ Ui (s) s Uy (s)
0,0 0,0000 3,0 0,4391
0,1 -0,0244 3,5 0,4799
0,2 0,0476 4,0 0,5159
0,3 0,0698 4,5 0,5479
0,4 0,0916 5,0 0,5764
0,56 0,1113 5,5 0,6020
0,6 0,1308 6,0 0,6251
0,7 0,1494 6,5 0,6460
0,8 0,1674 7,0 0,6650
0,9 0,1846 75 0,6824
1,0 0,2012 8,0 0,6983
1,1 0,2172 8,6 0,7128
1,2 0,2326 9,0 0,7263
1,3 0,2475 9,6 0,7386
14 0,2618 10 0,7501
1,5 0,2757 11 0,7706
1,6 0,2891 12 0,7883
1,7 0,3021 15 0,8296
1,8 0,3146 20 0,8733
1,9 0,3268 25 0,9003
2,0 9,3386 30 0,9183
2,1 04,3500 40 0,8405
2,2 0,3611 50 0,9535
2,3 0,3719 100 0,9781
2.4 0,3823 500 0,9959
2,6 0,3924 1000 0,9980

© 1,0000

z |ReS(z)| JuS) | = |[ReS(z)| JmS(x)
0,00 | 1,00000 | 000000 | 1,0 | 0,27362:] —0,37626
0,02 | 0,96969 | —0,07315 | 1,2 | 0,21564.| — 0,35590
0,04 | 0,94104 | —0,11919 | 14 | 0,17050 | — 0,33352
0,06 | 0,91373 | --0,15537 | 1,6 | 0,13516| — 0,31001
0,08 | 0,88759 | —0,18537 | 1,8 | 0,10739°| — 0,28905
0,10 | 0,86252 | —0,21091 | 2.0 | 0,08549 ;| — 0,26845
0,12 | 0,83842 | —0,23302 | 22 | 0,06817 | — 0,24933
014 | 081522 | —0,25235 | 24 | 0,054d4 | —0.23177
0,16 | 0,79286 | —0,26040 | 2,6. | 0,04353 :| — 0,21574
018 | 077120 | —0,28451 | 2,8 | 003485 | — 0,20118
0.20 | 0.75046 | —0,29795 | 3,0 | 0,02792 | — 0,18798
022 | 073033 | — 030094 | 3,2 | 0,02240 | —0,17603
0,24 | 071087 | —0,32066 | 34 | 001798 | -—0,16521
026 | 0,60203 | —0,33025 | 3,6 & 0,01445 | — 0,15642
0,28 | 0,67380 | —0.33884 | 38 | 001162 | — 0,14655
0,30 | 0,65615 | —0,34652 | 4,0 | 0,00935 | — 0.13851
0,32 | 0,63004 | —0,35339 | 4,2 : 000753 | —0.13120
0,34 | 0,62246 | —0,35953 | 4,4 | 0,00808 | — 012455
0,36 | 0,60638 | —9,36499 | 4.6 | 0,00489 | —0,11849
0,38 | 0,59079 | —0,36985 | 4,8 | 0,00394 | — 011295
040 | 0,57566 | —0,37415 | 50 | 0,00318 | — 0,10787
0.42 | 0,56098 | —0,37794 | 52 | 0,00257 | — 0,10322
0,44 | 0,54672 | —0,38127 | 54 | 0,00207 | — 0,09804
046 | 0,53288 | —0,38416 | 56 | 0,00167 | — 0,09490
048 | 0,51943 | —0,38666 | 58 | 0,00135 | — 0,00134
050 | 0,50637 | —0,38879 | 6,0 | 0,00109 | — 0,08796
0,52 | 049363 | —0,39059 | 7.0 | 0,60038 | —0,07425
0,54 | 048135 | —0,39207 | 80 | 0,00013 | — 0,06431
0,56 | 0,46936 | —0,39326 | 9,0 | 0,00005 | — 0,05677
058 | 0,45770 | —0,39419 | 10,0 | 0,00002 | — 0,05084
0,60 | 0,44637 | —0,39487 | 12,0 | 0,00000 | —0,03214
0,70 | 0,39416 | —0,39511 | 140 | 0,00000 | — 0,03602
0,80 | 0,34858 | —0,39132 | 20,0 ' 0,00000 | — 0,02510
0,00 | 0,30866 | —-0,38475 | oo 0 0
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